
Learning-Based Assume-Guarantee Verification

(Tool Paper)

Dimitra Giannakopoulou1 and Corina S. Păsăreanu2

1 RIACS and 2 QSS, NASA Ames, Moffett Field, CA 94035-1000, USA
{dimitra,pcorina}@email.arc.nasa.gov

1 Introduction

Despite significant advances in the development of model checking, it remains
a difficult task in the hands of experts to make it scale to the size of industrial
systems. A key step in achieving scalability is to “divide-and-conquer”, that is,
to break up the verification of a system into smaller tasks that involve the ver-
ification of its components. Assume-guarantee reasoning [9, 11] is a widespread
“divide-and-conquer” approach that uses assumptions when checking individual
components of a system. Assumptions essentially encode expectations that each
component has from the rest the system in order to operate correctly. Coming
up with the right assumptions is typically a non-trivial manual process, which
limits the applicability of this type of reasoning in practice.

Over the last few years, we have developed a collection of techniques and
a supporting toolset, for performing assume-guarantee reasoning of software in
an automated fashion. Our techniques are applicable both at the level of design
models, and at the level of actual source code. In the heart of these techniques lies
a framework that uses an off-the-shelf learning algorithm for regular languages,
namely L* [1], to compute assumptions automatically.

The rest of the paper is organized as follows. Section 2 is a high-level descrip-
tion of our techniques for learning-based assume-guarantee reasoning of software.
Section 3 discusses the tool support for our techniques and experimental results
obtained from the application of our approach to some industrial size case stud-
ies, and we conclude the paper with Section 4.

2 Learning-based Assume-Guarantee Reasoning

Analysis of Finite State Models At the design level, our techniques target
models described as labeled transition systems (LTSs) with blocking communi-
cation. We check safety properties expressed as finite state machines that de-
scribe the legal sequences of actions that a system can perform. We reason about
assume-guarantee formulas 〈A〉M〈P 〉, where M is a component, P is a property
and A is an assumption on M ’s environment. The formula is true if whenever
M is part of a system that satisfies A, then the system must also guarantee P .

Our framework is equipped with a collection of assume-guarantee rules which
are sound and complete [2]. Incomplete rules can also be incorporated. The
simplest (non-symmetric) assume guarantee rule (see Figure 1 (a)) establishes

2 Dimitra Giannakopoulou1 and Corina S. Păsăreanu2

1 : 〈A1〉M1〈P 〉
2 : 〈true〉M2〈A1〉

〈true〉M1 ‖ M2〈P 〉

1 : 〈A1〉M1〈P 〉
2 : 〈A2〉M2〈P 〉
3 : C(A1, A2, P)

M1 ‖ M2 |= P

1..n : 〈Ai〉Mi〈P 〉
n + 1 : C(A1, · · ·An, P)

〈true〉M1 ‖ · · · ‖ Mn〈P 〉

(a) (b) (c)

Fig. 1. Assume-guarantee rules

that property P holds for the composition of two models M1 and M2. In [6], we
present an approach that uses this rule to perform assume-guarantee reasoning
in an incremental and fully automatic fashion. The approach iterates a process
based on gradually learning an assumption that is strong enough for M1 to
satisfy P but weak enough to be an abstraction of M2’s behavior.

The framework also handles symmetric rules [2]. These rules are instances of
the rule pattern presented in Figure 1 (b). C(A1, A2, P) represents some logical
condition that involves the two assumptions and the property. For example, an
instance of this rule states as the third premise that A1 ‖ A2 |= P . Here A1

and A2 denote the complement automata. Intuitively, this premise ensures that
the possible common traces of M1 and M2, which are ruled out by the two
assumptions, satisfy the property.

The approach extends to reasoning about n components. For the non-symmetric
rule, we can decompose the system into two parts M1 and M ′

2
= M2 ‖ · · · ‖ Mn,

and apply the approach recursively for checking Premise 2. The generalization
for symmetric rules follows the pattern of Figure 1 (c); its use in the context of
learning-based assume-guarantee verification is illustrated in Figure 2.

The input models M1, ..., Mn are created by the user or extracted from
source code, using automated abstraction techniques, as discussed later in this
section. At each iteration, L* generates approximate assumptions A1, ... An.
Model checking is then used to determine whether 〈Ai〉Mi〈P 〉 holds for each
i = 1..n. If the result of any of these checks is false, then L* uses the returned
counterexample to refine the corresponding assumption. The refinement process
iterates until we obtain assumptions that are appropriate for showing that the
first n premises hold. The last premise is then checked to discharge the assump-
tions; if it holds, then, according to the compositional rule, M1 ‖ · · · ‖ Mn |= P .
Otherwise, the obtained counterexample is analyzed to see if it corresponds to
a real error, or it is spurious, in which case it is used to refine the assumptions.
The counterexample analysis is performed component wise.

For finite state systems, the iterative learning process terminates and it yields
minimal assumptions [6]. In our experience, the generated assumptions are usu-
ally orders of magnitude smaller than the analyzed components, and the cost
of learning-based assume-guarantee verification is small as compared to non-
compositional model checking. This is often the case for well designed software,
where the interfaces between components are usually small. However, there may
be cases where no single rule or no particular system decomposition yields small
assumptions. Our framework partially alleviates this problem, by providing a col-
lection of rules that the user can select and experiment with. The decomposition
is still a manual process.

Learning-Based Assume-Guarantee Verification (Tool Paper) 3

LTSA Editor

source code:
C ... C1 n

Assumption
Learning

M ... M 1 n

M ... M 1 n

Assumption
Learning

Assumption
Learning

A1 2A A n

> M1A1 <P>< A2 <P>> M2< An > M <P>n<

true true true

true
M || ... || Mn1

P holds in
1 2 nC(A , A , ..., A , P)

M || ... || M1 n

P does not hold in
Analysis

Counterexample

false

...

Extraction
Model

models:

models:

false falsefalse

Learning−based Assume−guarantee Verification

refine models

refine assumptions

refine

Fig. 2. Learning based assume-guarantee verification

Analysis of Source Code Assume first a top-down software development pro-
cess, where one creates and debugs design models, which are then used to guide
the development of source code (possibly in a (semi-) automatic way by code
synthesis). In such a setting, the assumptions created at the design level can be
used to check source code in an assume guarantee style, as presented in [8].

For cases where design models are not available, we have recently extended
our framework with a component for model extraction from source code (see
Figure 2). The framework is iterative: extracted models are analyzed in an
assume-guarantee style, and when the analysis detects spurious errors due to
the abstraction of the source code, the models are refined automatically. The
extended framework advocates a clear separation between model extraction and
model analysis, which facilitates the incorporation of existing well-engineered
tools into it. For example, we have integrated our framework with the Magic
tool that extracts finite-state models from C code using automated predicate
abstraction and refinement [4]. Other tools that build finite-state models of soft-
ware could also be used (e.g. Bandera for Java [7]).

3 Tool Support

Implementation The techniques presented in the previous section have been
implemented in the context of the LTSA tool [10]. The LTSA supports model
checking of a system based on its architecture. It features graphical display,
animation and simulation of LTSs (see Figure 3). Its input language “FSP” is a
process-algebra style notation with LTS semantics. The LTSA has an extensible
architecture which allows extra features to be added by means of plugins [5].

Our initial learning framework [6] was implemented within the core of the
LTSA tool. This implementation is efficient because it can directly manipulate
the internal data structures of the LTSA. However, such a solution is not sus-
tainable, because it is hard to synchronize our code development with that of
the LTSA. For this reason, we proceeded by implementing our extensions to the
LTSA as the Assume-Guarantee plugin.

4 Dimitra Giannakopoulou1 and Corina S. Păsăreanu2

Fig. 3. LTSA GUI including Assume-Guarantee Plugin

The Assume-Guarantee plugin extends the LTSA with a menu and a tab
(see Figure 3). The menu provides options for analyzing Design Models and
Source Code (uses Magic to extract models), and for selecting assume-guarantee
rules. For the case of design models, all the processes in the specification are
displayed in the tab, so that the user may select which components and properties
participate in an assume-guarantee proof. For source code, these choices are
currently hard-coded, but we intend to improve on this in the future.

Note that, at the design level, there is a significant performance overhead
incurred by the plug-in implementation, which is not present in the original,
non plug-in implementation. This is due to the fact that plug-ins communicate
with the LTSA by placing FSP descriptions of LTSs in the Edit tab. In the
future, we expect the LTSA developers to expose LTSs as objects which will
enable us to do a more efficient implementation.

Experience Within a project at NASA Ames, we have applied our techniques
to the design and code of the K9 Rover Executive. The design models consist of
approximately 700 lines of FSP code. The code we analyzed is about 7K lines
of Java, translated from 10K lines of C++ code. Some results are shown in the
tables below (monolithic refers to non-compositional verification).

We have also applied our integrated tool-set with the Magic model extractor
to the verification of various safety properties of OpenSSL version 0.9.6c which
has about 74,000 lines of C code. Our approach achieved two orders of magnitude
space reduction when compared to Magic’s non-compositional analysis [3]. Sym-
metric rules did consistently better than the non-symmetric one in this example.

Iteration |Ai| States Transitions

1 1 294 1,548

2 2 269 1,560

3 3 541 3,066

4 5 12 69

5 6 474 2,706

Application of learning to the design of the K9
Rover Executive. Global state space: 3,630 states
and 34,653 transitions. Largest state space com-
puted by our approach: 541 states and 3,066 tran-
sitions (iteration 3). We achieve an order of mag-
nitude space reduction.

Learning-Based Assume-Guarantee Verification (Tool Paper) 5

System States Transitions Memory Time

Monolithic 183,132 425,641 952.85Mb 12m,24

Premise 1 53,215 117,756 255.96Mb 4m,49
Premise 2 13,884 20,601 118.97Mb 1m,16

Checking K9 code with JPF
[12]. Use of design assumptions
with the rule in Fig. 1 (a) yields
a 3-fold space reduction.

4 Conclusions and Future Work
We presented a framework and its associated tool for learning-based assume-
guarantee verification of software models and implementations. Our experience
so far indicates that the approach has the potential of scaling to industrial size
applications, especially when combined with abstraction.

Our tool is extensible: new assume-guarantee rules can be easily incorporated,
and alternative tools for model extraction can be interfaced with it. Moreover,
our framework is general; it relies on standard features of model checking, and
could therefore be introduced in other model checking tools. For example, Magic
has recently been extended to directly support learning-based assume guarantee
reasoning [3]. We are also planning an implementation of our framework for the
Spin model checker, in the context of a new NASA project.

Acknowledgements
We thank Howard Barringer and Jamieson Cobleigh for their contributions to
our techniques and Sagar Chaki for helping with the Magic integration.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, Nov. 1987.

2. H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu. Proof rules for automated
compositional verification through learning. In Proc. SAVCBS Workshop, 2003.

3. S. Chaki, E. Clarke, D. Giannakopoulou, and C. Păsăreanu. Abstraction and
assume-guarantee reasoning for automated software verification. RIACS TR 05.02,
October 2004.

4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE TSE, 30(6):388–402, June 2004.

5. R. Chatley, S. Eisenbach, and J. Magee. Magicbeans: a Platform for Deploying
Plugin Components. In Proc. of Component Deployment (CD 2004).

6. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In Proc. of 9th TACAS, pages 331–346, Apr. 2003.

7. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Păsăreanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In ICSE’00.

8. D. Giannakopoulou, C. S. Păsăreanu, and J. M. Cobleigh. Assume-guarantee ver-
ification of source code with design-level assumptions. In Proc. of ICSE 2004.

9. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. on Prog. Lang. and Sys., 5(4):596–619, Oct. 1983.

10. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John
Wiley & Sons, 1999.

11. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and models of concurrent systems, pages 123–144, 1985.

12. W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In
Proc. of the Fifteenth IEEE Int. Conf. on Auto. Soft. Eng., pages 3–12, Sept. 2000.

